自我监督的单眼深度估计最近在计算机视觉上受到了很多关注。文献中的大多数现有作品聚集了多尺度特征,以通过直接的串联或元素添加来进行深度预测,但是,这种特征聚合操作通常忽略了多尺度特征之间的上下文一致性。在解决这个问题时,我们提出了同时汇总一对低规模和高尺度功能并保持其上下文一致性的自底功能聚合(SDFA)模块。 SDFA分别使用三个分支来学习三个功能偏移映射:一个用于完善输入低尺度功能的偏移映射,另外两个用于在设计的自我验证方式下完善输入高尺度功能。然后,我们提出了一个基于SDFA的网络,用于自我监督的单眼深度估计,并设计一种自缩训练策略,以使用SDFA模块训练拟议的网络。 KITTI数据集的实验结果表明,在大多数情况下,所提出的方法优于比较最新方法。该代码可在https://github.com/zm-zhou/sdfa-net_pytorch上找到。
translated by 谷歌翻译
最近,以自我监督的方式从单个图像中学习场景深度,最近受到了很多关注,旨在从单一图像中学习场景深度。尽管最近在这一领域做出了努力,但如何学习准确的场景深度并减轻闭塞对自我监督深度估计的负面影响仍然是一个空旷的问题。在解决这个问题时,我们首先凭经验分析了连续和离散深度约束的影响,这些约束在许多现有作品的培训过程中广泛使用。然后受到上述经验分析的启发,我们提出了一个新型网络,以学习一个自我监督的单眼深度估计,称为ocfd-net的咬合意识到的粗到细深度图。给定任意训练的立体声图像对,提议的OCFD-NET不仅在学习粗级深度图上采用离散的深度约束,而且还采用连续的深度约束来学习场景深度残差,从而导致罚款。 - 级别的深度图。此外,在建议的OCFD-NET下设计了一个遮挡感知模块,该模块能够提高学习闭塞的精细级别深度图的能力。 Kitti的实验结果表明,在大多数情况下,所提出的方法在七个常用指标下的比较最先进方法优于比较的最先进方法。此外,对Make3D的实验结果证明了该方法在四个常用指标下的跨数据集泛化能力方面的有效性。该代码可在https://github.com/zm-zhou/ocfd-net_pytorch上找到。
translated by 谷歌翻译
Autonomous cars are indispensable when humans go further down the hands-free route. Although existing literature highlights that the acceptance of the autonomous car will increase if it drives in a human-like manner, sparse research offers the naturalistic experience from a passenger's seat perspective to examine the human likeness of current autonomous cars. The present study tested whether the AI driver could create a human-like ride experience for passengers based on 69 participants' feedback in a real-road scenario. We designed a ride experience-based version of the non-verbal Turing test for automated driving. Participants rode in autonomous cars (driven by either human or AI drivers) as a passenger and judged whether the driver was human or AI. The AI driver failed to pass our test because passengers detected the AI driver above chance. In contrast, when the human driver drove the car, the passengers' judgement was around chance. We further investigated how human passengers ascribe humanness in our test. Based on Lewin's field theory, we advanced a computational model combining signal detection theory with pre-trained language models to predict passengers' humanness rating behaviour. We employed affective transition between pre-study baseline emotions and corresponding post-stage emotions as the signal strength of our model. Results showed that the passengers' ascription of humanness would increase with the greater affective transition. Our study suggested an important role of affective transition in passengers' ascription of humanness, which might become a future direction for autonomous driving.
translated by 谷歌翻译
域适应性(DA)旨在转移标记良好的源域的知识,以促进未标记的目标学习。当转向特定的任务,例如室内(Wi-Fi)本地化时,必须学习跨域回归剂以减轻域移位。本文提出了一种新颖的方法对抗性双向反应器网络(ABRNET),以寻求更有效的跨域回归模型。具体而言,开发了差异的双向试剂架构,以最大化双向试验的差异,以发现远离源分布的不确定目标实例,然后在特征提取器和双回归器之间采用了对抗性训练机制,以产生域内不变的表示。为了进一步弥合大域间隙,设计了一个特定域的增强模块,旨在合成两个源相似和类似的类似中间域,以逐渐消除原始域的不匹配。对两个跨域回归基准的实证研究说明了我们方法解决域自适应回归(DAR)问题的力量。
translated by 谷歌翻译
域的适应性旨在使标记的源域和未标记的目标域对齐,并且大多数现有方法都认为源数据是可访问的。不幸的是,这种范式引起了数据隐私和安全性的关注。最近的研究试图通过无源设置来消除这些问题,该设置将源训练的模型适应目标域而不暴露源数据。但是,由于对源模型的对抗性攻击,无源范式仍然有数据泄漏的风险。因此,提出了黑框设置,其中只能利用源模型的输出。在本文中,我们同时介绍了无源的适应和黑盒适应性,提出了一种新的方法,即来自频率混合和相互学习(FMML)的“更好的目标表示”。具体而言,我们引入了一种新的数据增强技术作为频率混音,该技术突出了插值中与任务相关的对象,从而增强了目标模型的类符合性和线性行为。此外,我们引入了一种称为相互学习的网络正则化方法,以介绍域的适应问题。它通过自我知识蒸馏传输目标模型内部的知识,从而通过学习多尺度目标表示来减轻对源域的过度拟合。广泛的实验表明,我们的方法在两种设置下都可以在几个基准数据集上实现最新性能。
translated by 谷歌翻译
我们介绍了缩写为Argen的任意矩形范围广义弹性净罚分法,用于在高维稀疏线性模型中执行约束变量选择和正则化。作为非负弹性净惩罚方法的自然延伸,证明了在某些条件下具有可变选择一致性和估计一致性。研究了Argen估计器分布的渐近行为。我们还提出了一种称为MU-QP-RR-W-$ L_1 $的算法,以有效解决ARGEN。通过进行仿真研究,我们表明Argen在许多设置中优于弹性网。最后,执行S&P 500 500指数跟踪对库存分配的限制的应用,以提供适应argen解决现实问题的一般指导。
translated by 谷歌翻译
对行人行为的预测对于完全自主车辆安全有效地在繁忙的城市街道上驾驶至关重要。未来的自治车需要适应混合条件,不仅具有技术还是社会能力。随着更多算法和数据集已经开发出预测行人行为,这些努力缺乏基准标签和估计行人的时间动态意图变化的能力,提供了对交互场景的解释,以及具有社会智能的支持算法。本文提出并分享另一个代表数据集,称为Iupui-CSRC行人位于意图(PSI)数据,除了综合计算机视觉标签之外,具有两种创新标签。第一部小说标签是在自助式车辆前面交叉的行人的动态意图变化,从24个司机中实现了不同的背景。第二个是在估计行人意图并在交互期间预测其行为时对驾驶员推理过程的基于文本的解释。这些创新标签可以启用几个计算机视觉任务,包括行人意图/行为预测,车辆行人互动分割和用于可解释算法的视频到语言映射。发布的数据集可以从根本上从根本上改善行人行为预测模型的发展,并开发社会智能自治车,以有效地与行人进行互动。 DataSet已被不同的任务进行评估,并已释放到公众访问。
translated by 谷歌翻译
联合学习(FL)是一个有希望的策略,用于使用客户端(即边缘设备)的网络进行隐私保留,分布式学习。然而,客户之间的数据分布通常是非IID的,使得有效优化困难。为了缓解这个问题,许多流行算法专注于通过引入各种近似术语,一些产生可观的计算和/或内存开销来减轻客户端跨客户端的影响,以限制关于全局模型的本地更新。相反,我们考虑重新思考的解决方案,以重点关注局部学习一般性而不是近端限制。为此,我们首先提出了一项系统的研究,通过二阶指标通知,更好地了解FL中的算法效果。有趣的是,我们发现标准的正则化方法令人惊讶的是减轻数据异质性效应的强烈表现者。根据我们的调查结果,我们进一步提出了一种简单有效的方法,努力克服数据异质性和先前方法的陷阱。 FedAlign在各种设置中使用最先进的FL方法实现了竞争准确性,同时最大限度地减少计算和内存开销。代码将公开。
translated by 谷歌翻译
张量分解是学习多通道结构和来自高维数据的异质特征的有效工具,例如多视图图像和多通道脑电图(EEG)信号,通常由张量表示。但是,大多数张量分解方法是线性特征提取技术,它们无法在高维数据中揭示非线性结构。为了解决此类问题,已经提出了许多算法,以同时执行线性和非线性特征提取。代表性算法是用于图像群集的图形正则非负矩阵分解(GNMF)。但是,正常的2阶图只能模拟对象的成对相似性,该对象无法充分利用样品的复杂结构。因此,我们提出了一种新型方法,称为HyperGraph Narodarized非负张量分解(HyperNTF),该方法利用超图来编码样品之间的复杂连接,并采用了与最终的典型多形(CP)分解模式相对应的因子矩阵,为低维度表示。关于合成歧管,现实世界图像数据集和脑电图信号的广泛实验,表明HyperNTF在降低,聚类和分类方面优于最先进的方法。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译